8 ML
import pandas as pd #task 1: data = pd.read_csv("realestate.csv") data.columns = data.columns.str.strip() #task 2: data.dropna(inplace=True) #task 4: filtered_data= data[(data['transactiondate'] >= 2013) & (data['distance'] <= 500)] #task 5: filtered_data = pd.get_dummies(filtered_data, columns=['stores']) #task 6: average_price_by_age = filtered_data.groupby('houseage')['unit_area'].mean() #task 7: lower_bound = filtered_data['unit_area'].quantile(0.05) upper_bound = filtered_data['unit_area'].quantile(0.95) filtered_data = filtered_data[(filtered_data['unit_area']>=lower_bound)&(filtered_data['unit_area']<=upper_bound)] print(filtered_data.head())