4. ML
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
data= pd.read_csv("Iris.csv")
data.head()
X = data.drop('Species' , axis = 1)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
sse= []
for k in range(1, 11):
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X_scaled)
sse.append(kmeans.inertia_)
plt.figure(figsize=(8, 6))
plt.plot(range(1,11), sse , marker='o')
plt.plot('Elbow Method')
plt.xlabel('Number of Clusters')
plt.xlabel('SSE (Sum of Squared Distance)')
plt.show()
Comments
Post a Comment