2. ML
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('diabetes.csv')
import numpy as np
x=data.iloc[:,:-1].values
y=data.iloc[:,-1].values
from sklearn.model_selection import train_test_split
xtrain, xtest , ytrain, ytest = train_test_split(x, y, test_size=0.25, random_state=0)
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
xtrain = sc_x.fit_transform(xtrain)
xtest= sc_x.fit_transform(xtest)
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=0)
classifier.fit(xtrain, ytrain)
y_pred = classifier.predict(xtest)
from sklearn.metrics import accuracy_score
print ("Accuracy : ", accuracy_score(ytest, y_pred))
Comments
Post a Comment