8 ML
import pandas as pd
#task 1:
data = pd.read_csv("realestate.csv")
data.columns = data.columns.str.strip()
#task 2:
data.dropna(inplace=True)
#task 4:
filtered_data= data[(data['transactiondate'] >= 2013) & (data['distance'] <= 500)]
#task 5:
filtered_data = pd.get_dummies(filtered_data, columns=['stores'])
#task 6:
average_price_by_age = filtered_data.groupby('houseage')['unit_area'].mean()
#task 7:
lower_bound = filtered_data['unit_area'].quantile(0.05)
upper_bound = filtered_data['unit_area'].quantile(0.95)
filtered_data = filtered_data[(filtered_data['unit_area']>=lower_bound)&(filtered_data['unit_area']<=upper_bound)]
print(filtered_data.head())
Comments
Post a Comment