1. ML
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv('wine.csv')
X = data.drop('Alcohol' , axis=1)
y = data['Alcohol']
scaler= StandardScaler()
X_scaled = scaler.fit_transform(X)
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
plt.figure(figsize=(10,6))
plt.scatter(X_pca[:,0], X_pca[:,1], c=y, cmap='viridis')
plt.xlabel('principle component 1')
plt.ylabel('principle component 2')
plt.title('PCA: Wine Dataset')
plt.colorbar(label='Wine Class')
plt.show()
Comments
Post a Comment