7 ML

 import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler


#task 1:

df = pd.read_csv("telecom_customer_churn.csv")


#task 2:

print(df.head())

print(df.info())

print(df.describe())


#task 3:

df.fillna(method='ffill', inplace=True)


#task 4:

df.drop_duplicates(inplace=True)


#task 5:

df['Gender'] = df['Gender'].str.lower()


#task 6:

df['TotalCharges'] = pd.to_numric(df['Total Charges'], errors='coerce')


#task 7:

z_scores = (df['TotalCharges'] - df['Total Charges'].mean())/df['Total Charges'].std()

df = df[(z_scores.abs() < 3)]


#task 8:

df['TenureinMonths'] =df['Tenure in Months']*30


#task 9:

scaler = StandardScaler()

df[['MonthlyCharge', 'TotalCharges', 'TenurenMonths']] = Scaler.fit_transform[['Monthly Charge', 'Total Charges', 'Tenure in Months']])


#task 10:

X = df.drop('Churn Category', axis=1)

y = df['Churn Category']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


#Task 11:

df.to_csv("Cleaned_telecom_customer_churn.", index=False)

Comments

Popular posts from this blog

DREAM LEAGUE SOCCER 2019 MOD

10 CL3

Garena Contra Return