5. ML
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
data = pd.read_csv("car_evaluation.csv", header=None)
columns = ["buying","maint","doors","persons","lug_boot","safety","class"]
data.columns = columns
data_encoded = pd.get_dummies(data, columns=columns[:-1], drop_first=True)
X=data_encoded.drop('class' , axis = 1)
y=data_encoded['class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
rf_classifier = RandomForestClassifier(random_state=42)
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:" , accuracy)
class_report = classification_report(y_test, y_pred, target_names=data['class'].unique())
print("Classification Report:\n", class_report)
Comments
Post a Comment